Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 742
Filtrar
1.
PLoS One ; 19(4): e0298266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573921

RESUMEN

A mechanical device inspired by the pistol shrimp snapper claw was developed. This technology features a claw characterized by a periodic opening/closing motion, at a controlled frequency, capable of producing oscillating flows at transitional Reynolds numbers. An innovative method was also proposed for determining the corrosion rate of carbon steel samples under oscillating acidic streams (aqueous solution of HCl). By employing very-thin carbon steel specimens (25 µm thickness), with one side coated with Zn and not exposed to the stream, it became possible to electrochemically sense the Zn surface once the steel sample was perforated, thus providing the average dissolution rate into the most relevant pit on the steel surface. Furthermore, a laser light positioned beneath the metallic sample, along with a camera programmed to periodically capture images of the steel surface, facilitated the accurate counting of the number of newly formed pits. The system consisting of the thin steel sample and the Zn coating can be seen as a type of corrosion sensor. Furthermore, the proposed laser illumination method allows corroborating the electrochemical detection of pits and also establishing their location. The techniques crafted in this study pave the way for developing alternative corrosion sensors that boast appealing attributes: affordability, compactness, and acceptable accuracy to detect in time and space localized damage.


Asunto(s)
Carbono , Acero , Carbono/química , Acero/química , Corrosión , Ríos , Ácidos/química
2.
Int J Biol Macromol ; 264(Pt 2): 130769, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467215

RESUMEN

Two novel chitosan derivatives (water soluble and acid soluble) modified with thiocarbohydrazide were produced by a quick and easy technique using formaldehyde as links. The novel compounds were synthesized and then characterized by thermogravimetric analysis, elemental analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Their surface morphologies were examined using scanning electron microscopy. These chitosan derivatives could produce pH-dependent gels. The behavior of mild steel in 5 % acetic acid, including both inhibitors at various concentrations, was investigated using gravimetric and electrochemical experiments. According to the early findings, both compounds (TCFACN and TCFWCN) functioned as mixed-type metal corrosion inhibitors. Both inhibitors showed their best corrosion inhibition efficiency at 80 mg L-1. TCFACN and TCFWCN, showed approximately 92 % and 94 % corrosion inhibition, respectively, at an optimal concentration of 80 mg L-1, according to electrochemical analysis. In the corrosion test, the water contact angle of the polished MS sample at 87.90 °C was reduced to 51 °C. The water contact angles for MS inhibited by TCFACN and TCFWCN in the same electrolyte were greater, measuring 78.10 °C and 93.10 °C, respectively. The theoretical results also support the experimental findings.


Asunto(s)
Quitosano , Quitosano/química , Corrosión , Adsorción , Ácidos , Acero/química , Agua
3.
Waste Manag ; 180: 36-46, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503032

RESUMEN

As a by-product of the steelmaking industry, the large-volume production and accumulation of steel converter slag cause environmental issues such as land occupation and dust pollution. Since metal salts of unsaturated carboxylic acid can be used to reinforce rubber, this study explores the innovative application of in-situ modified steel slag, mainly comprising metal oxides, with methacrylic acid (MAA) as a rubber filler partially replacing carbon black. By etching the surface of steel slag particles with MAA, their surface roughness was increased, and the chemical bonding of metal methacrylate salt was introduced to enhance their interaction with the molecular chain of natural rubber (NR). The results showed that using the steel slag filler effectively shortened the vulcanization molding cycle of NR composites. The MAA in-situ modification effectively improved the interaction between steel slag and NR molecular chains. Meanwhile, the physical and mechanical properties, fatigue properties, and dynamic mechanical properties of the experimental group with MAA in-situ modified steel slag (MAA-in-situ-m-SS) were significantly enhanced compared with those of NR composites partially filled with unmodified slag. With the dosage of 7.5 phr or 10 phr, the above properties matched or even exceeded those of NR composites purely filled with carbon black. More importantly, partially replacing carbon black with modified steel slag reduced fossil fuel consumption and greenhouse gas emission from carbon black production. This study pioneered an effective path for the resourceful utilization of steel slag and the green development of the steelmaking and rubber industries.


Asunto(s)
Goma , Residuos Sólidos , Acero/química , Hollín , Residuos Industriales/análisis , Metales , Metacrilatos
4.
Langmuir ; 40(11): 5738-5752, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38450610

RESUMEN

The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM, and SEM were employed. The results showed that the pumpkin leaf extract (PLE) is an effective cathode corrosion inhibitor, exhibiting exceptional protection for copper within a specific temperature range. The corrosion inhibition efficiency of the PLE against copper reached 89.98% when the concentration of the PLE reached 800 mg/L. Furthermore, when the temperature and soaking time increased, the corrosion protection efficiency of 800 mg/L PLE on copper consistently remained above 85%. Analysis of the morphology also indicated that the PLE possesses equally effective protection for copper at different temperatures. Furthermore, XPS analysis reveals that the PLE molecules are indeed adsorbed to form an adsorption film, which is consistent with Langmuir monolayer adsorption. Molecular dynamics simulations and quantum chemical calculations were conducted on the main components of the PLE.


Asunto(s)
Cucurbita , Corrosión , Cobre/química , Acero/química , Extractos Vegetales/química
5.
Int J Biol Macromol ; 263(Pt 1): 130133, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354934

RESUMEN

This study aims to explore the prevention of chitosan modified with a fused heterocyclic compound as a sustainable corrosion inhibitor for mild steel in 1 M HCl. Electrochemical instruments, including potentiodynamic polarization techniques, and electrochemical impedance spectroscopy (EIS), were employed to evaluate the corrosion protection performance. The outcomes showed that the chitosan modified with a fused heterocyclic compound has outstanding inhibition performance, with an inhibition effectiveness of 98.25 % at 100 ppm. The anti-corrosion features of modified chitosan were ascribed to the presence of hetero atoms in modified chitosan composite which leads to the creation of a protective layer, The modified chitosan composite behaved as mixed-typed inhibitors, as shown by the PDP results. The modified chitosan composite adsorbs on mild steel in the investigated corrosive media via chemisorption interactions, and its adsorption followed the Langmuir adsorption model. Furthermore, increasing the temperature from 303 to 333 K enhanced the corrosion rate, most likely due to the desorption of the inhibitor agent from the steel surface.


Asunto(s)
Quitosano , Quitosano/química , Acero/química , Corrosión , Propiedades de Superficie , Ácido Clorhídrico/química
6.
Bioelectrochemistry ; 157: 108659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38330530

RESUMEN

The issue of material failure attributed to microbiologically influenced corrosion (MIC) is escalating in seriousness. Microorganisms not only facilitate corrosion but certain beneficial microorganisms also impede its occurrence. This study explored the impact of marine B. velezensis on the corrosion behavior of X65 steel in simulated offshore oilfield produced water. B. velezensis exhibited rapid growth in the initial stages, and the organic acid metabolites were found to promote corrosion. Subsequently, there was an increase in cross-linked "networked" biofilms products, a significant rise in the prismatic shape of corrosion products, and a tendency for continuous development in the middle and late stages. The organic/inorganic mineralized film layer formed on the surface remained consistently complete. Metabolic products of amino acid corrosion inhibitors were also observed to be adsorbed into the film. B. velezensis altered the kinetics of the X65 steel cathodic reaction, resulting in a deceleration of the electrochemical reaction rate. The mineralization induced by B. velezensis effectively slowed down the corrosion rate of X65 steel.


Asunto(s)
Bacillus , Acero , Acero/química , Agua , Corrosión , Biomineralización , Yacimiento de Petróleo y Gas , Biopelículas
7.
Bioelectrochemistry ; 157: 108657, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38335713

RESUMEN

The microbiologically influenced corrosion inhibition (MICI) of Q235 carbon steel by Shewanella putrefaciens and mediated calcium deposition were investigated by regulating microbial mineralization. In a calcium-rich medium, S. putrefaciens rapidly created a protective calcium carbonate layer on the steel surface, which blocked Cl- diffusion. Without calcium, the biofilm and rust layer mitigated pitting corrosion but did not prevent Cl- penetration. Potentiodynamic polarization results indicated that the current densities (icorr values) of the corrosion produced in the S. putrefaciens-inoculated media with and without calcium were 0.4 µA/cm2 and 0.6 µA/cm2, respectively. Similarly, compared with those under sterile conditions, the corrosion inhibition rates were 92.2% and 87.4% higher, respectively. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) confirmed that the MICI was caused by the combination of microbial aerobic respiration and the deposited layers. Even under nonbiological conditions, S. putrefaciens-induced calcium carbonate deposition inhibited corrosion.


Asunto(s)
Shewanella putrefaciens , Acero , Acero/química , Shewanella putrefaciens/fisiología , Calcio , Carbono/química , Corrosión , Biopelículas , Carbonato de Calcio
8.
Bioelectrochemistry ; 157: 108656, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38290303

RESUMEN

Owing to the effects of seawater erosion, dry/wet cycles, dissolved oxygen and microorganisms, the corrosion of steel in marine tidal environments is a serious threat to the safe and stable operation of marine equipment and facilities. Among them, microbiologically influenced corrosion (MIC) of steel has received increasing attention. Cathodic protection (CP) is frequently used to control the corrosion of offshore steel structures. However, in the presence of microorganisms, implementation of CP and its specific effects remain controversial. In this study, the influence of Pseudomonas sp. on the CP efficiency of Zn sacrificial anodes (ZnSAs) during the tidal corrosion of X80 steel was studied. The results showed that CP efficiency exceeded 92% in an abiotic tidal environment. However, in the biotic tidal environment, Pseudomonas sp. significantly reduced the CP efficiency. Pseudomonas sp. and its biofilm promoted the corrosion of steel under CP, inhibited the formation of a complete calcareous deposit layer, which weakened the CP efficiency of ZnSA in the marine tidal environment.


Asunto(s)
Pseudomonas , Acero , Acero/química , Corrosión , Biopelículas , Electrodos
9.
J Environ Manage ; 353: 120183, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290262

RESUMEN

Constructed wetlands (CWs) are widely used to treat wastewater, while innovative studies are needed to support resource conservation, enhance multi-functionality, and improve the effectiveness of effluent usage. This study assessed the potential of CW's multiple functions by combining low-rank coal (lignite) and industrial waste (steel slag) in different configurations as CW substrates. The results of scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and metagenomic sequencing showed that the experimental treatment with lignite and steel slag mixtures had the highest multi-functionality, including efficient nutrient removal and carbon sequestration, as well as hydroponic crop production. Lignite and steel slag were mixed to form lignite-steel slag particle clusters, where Ca2+ dissolved on the surface of steel slag was combined with PO43- in wastewater to form Ca3(PO4)2 precipitation for phosphorus removal. A biofilm grew on the surface of lignite in this cluster, and OH- released from steel slag promoted lignite to release fulvic acid, which provided a carbon source for heterotrophic microorganisms and promoted denitrification. Moreover, fulvic acid enhanced carbon sequestration in CWs by increasing the biomass of Phragmites australis. The effluent from lignite-steel slag CW increased cherry tomato yield and quality while saving N and P applications. These results provide new ideas for the "green" and economic development of CW technology.


Asunto(s)
Aguas Residuales , Humedales , Acero/química , Carbón Mineral , Eliminación de Residuos Líquidos/métodos , Fósforo/química
10.
Sci Rep ; 14(1): 470, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172208

RESUMEN

A novel Schiff base [4-(morpholin-4-yl) benzylidenyl]thiosemicarbazide (MBT) was created by reaction condensation. The molecules of the products were verified by IR, 1HNMR, MS, and elemental techniques. The synergistic effect of KI with novel MBT on 304 stainless steel (SS) in acidic has been investigated experimentally and theoretically using DFT. The findings demonstrate that restriction efficacy on 304 SS improved with rising inhibitor concentrations, and this benefit was attributed to synergy when KI was injected. From EIS results, IE % increased with a higher concentration of MBT only and MBT + KI (from 100 to 600 ppm). MBT maximum IE % was 84.98%, at 600 ppm. MBT + KI, due to the I- ions synergistic effect, showed an IE% of about 95.48%, at 600 ppm. The adsorptions of MBT and MBT + KI on the surfaces of 304 SS are strongly fitted Langmuir adsorption isotherms. Thermodynamic parameters (Kads, ΔG0ads) were utilized. According to polarization findings, MBT behaves as a mixed-category antagonist. The Schiff base MBT was screened for its in vitro antimicrobial activities against some strains of bacteria and fungi. The result revealed that MBT proved to be an excellent candidate as a fungal agent being able to inhibit Aspergillus flavus.


Asunto(s)
Bases de Schiff , Acero Inoxidable , Bases de Schiff/química , Ácidos , Termodinámica , Aspergillus flavus , Acero/química
11.
Waste Manag ; 175: 62-72, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171077

RESUMEN

CO2 mineral sequestration using alkaline solid waste (ASW) is a promising strategy for synergistically reducing CO2 emissions and reusing industrial waste. However, improvement the carbonation degree still remains challenges due to the sluggish leaching rate of Ca/Mg ion at low pH. To the issues, this study proposed an amine-mediated CO2 absorption and mineralization process with six common ASWs, as well an ecological utilization route of CO2-ASW productions. Experimental results indicated that calcium carbide slag (CS) had greater CO2 mineralization capacity (86.2 g-CO2/kg-CS) than other ASWs, while stirring rate and particle size played a more important role during CO2 capture. Amine-mediated CO2 capture was verified to be more excellent with steel slag (SS) as mineral medium. When the MEA concentration was increased to 2 mol/L, the extraction efficiency of Ca2+ was increased by 35 %, leaded to the CO2 removal efficiency significantly promoted from 49 % to 92 %. The characterization of structural morphology referred spherical aragonite or needle-bar calcite was dominant for the porous mineralization products (30.6 m2/g). High germination index of pea seed (112.1 % at a dose of 10 g/L) inferred the negligible toxicological effects of tiny MEA residue over SS mineralization products, after centrifugally washing treatment. Pea seeds cultivated with mineralized products after centrifugal washing can achieve a growth rate of about 4 mm/d. Overall, this work provides a feasible route to apply the porous CO2-ASWs production into water conservation in arid and sandy land.


Asunto(s)
Dióxido de Carbono , Residuos Sólidos , Dióxido de Carbono/química , Carbonato de Calcio/química , Residuos Industriales/análisis , Minerales/química , Acero/química , Aminas
12.
Int J Biol Macromol ; 254(Pt 1): 127697, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918585

RESUMEN

Chitosan, as a proficient biopolymer, has enormous potential as an ecofriendly corrosion inhibitor (CI), but their limited solubility restricts practical applications. Herein, an eco-friendly and water-soluble chitosan salt (CS) was utilized as a green CI on N80 pipeline steel in artificial sea water. Several structural and surface analytical tools were engaged in describing the characteristics of novel CS polymer. The corrosion inhibition efficiencies of CS on steel at different concentrations were investigated through gravimetric, conventional and advanced electrochemical techniques along with the surface analyses. Tafel polarization tests specified that CS performed as mixed-type CI with prevalent anodic inhibition characteristics. At a concentration of 1000 ppm, CS provided an inhibition efficiency (IE) of 96.68 %, following physiochemical adsorptions of CS on N80 surface validated by fitting Langmuir adsorption isotherm. However, the reductions in the values of IE at high temperature specified that the CS is the temperature dependent CIs. Scanning electrochemical microscopic evaluation confirmed the formation of thin CS inhibitors films with high electrochemical stability on N80 steel in saline. The performed surface characterizations on inhibited surfaces validated the adsorption of CS on the N80 surface by forming thin inhibitor film to obstruct metal corrosion. The theoretical simulation studies using molecular dynamics and density functional theory corroborated the experimentally obtained results.


Asunto(s)
Quitosano , Quitosano/química , Acero/química , Corrosión , Propiedades de Superficie , Simulación de Dinámica Molecular , Agua de Mar , Agua
13.
Environ Sci Pollut Res Int ; 31(1): 1033-1049, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030847

RESUMEN

The corrosion of carbon steel infrastructure in acidic environments poses significant economic and safety challenges. Traditional inhibitors such as chromates are being phased out due to toxicity concerns. Thus, there is a need to develop effective and sustainable green alternatives. In this work, we evaluated an epoxy-based inhibitor, bisphenol A tetrabromo dipropoxy dianiline tetraglycidyl ether (TGEDADPTBBA), for protecting carbon steel against corrosion in 1 M hydrochloric acid. An integrated experiment-computation approach was employed. Polarization curves and electrochemical impedance spectroscopy were used to assess the inhibition efficiency and mechanism of TGEDADPTBBA. Quantum chemical calculations and molecular dynamics simulations provided atomic-level insights into adsorption behavior. Scanning electron microscopy with energy-dispersive X-ray spectroscopy characterized the surface morphology. The results showed that TGEDADPTBBA acted as a highly effective mixed-type inhibitor, achieving over 95% inhibition efficiency at a 10-3 M concentration. It suppressed corrosion currents while increasing the charge transfer resistance. Theoretical studies revealed that TGEDADPTBBA adsorbed onto steel surfaces via both electrostatic and van der Waals interactions. This stable adsorption facilitated the formation of a protective barrier layer, as observed experimentally. Notably, our work demonstrated the synergistic potential of combining experimental corrosion testing with computational modeling to develop structure-property relationships for innovative inhibitor design. This integrated approach offers insight into inhibition mechanisms and presents TGEDADPTBBA as an attractive green corrosion inhibitor alternative for industrial applications.


Asunto(s)
Ácidos , Acero , Acero/química , Corrosión , Simulación de Dinámica Molecular , Carbono/química
14.
Environ Sci Pollut Res Int ; 31(3): 4269-4279, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097840

RESUMEN

Microbiologically influenced corrosion (MIC) is one of the reasons leading to the service failure of pipelines buried in the soil. In this work, the effect of sulfate-reducing bacteria (SRB) on the corrosion behavior of Q235 carbon steel in groundwater was investigated by electrochemical methods, surface analysis, and biological analysis. The results show that SRB utilizes iron as electron donor to sustain the vital activities of organic carbon-starved groundwater during the 14-day experimental period. The microbial community composition analysis at the genus level demonstrate that the diversity and richness decrease after corrosion, and the dominant SRB species has changed from Desulfovibrio to Desulfosporosinus. Moreover, the impedance of the carbon steel in the presence of biofilm was 1 order of magnitude higher than that of other periods in the electrochemical test, indicating that the biofilm and formed ferrous sulfide layer impeded the occurrence of corrosion. Although the 3D topography indicated that the surface of carbon steel was more uneven and pits were increased in the presence of SRB, the average weight loss (0.0396 ± 0.0050 g) was much higher than that without SRB (0.0139 ± 0.0007 g). These results implied that the growth of SRB makes the corrosion process of Q235 carbon steel more complicated.


Asunto(s)
Desulfovibrio , Agua Subterránea , Microbiota , Acero/química , Corrosión , Carbono/farmacología , Biopelículas , Sulfatos/farmacología
15.
Bioresour Technol ; 394: 130229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135223

RESUMEN

This study aimed to investigate the effects of different proportions (0%, 5%, 7.5%, and 10%) of steel slag (SS) on humification and bacterial community characteristics during phosphate-amended composting of municipal sludge. Compared with adding KH2PO4 alone, co-adding SS significantly promoted the temperature, pH, nitrification, and critical enzyme activities (polyphenol oxidase, cellulase, laccase); especially organic matter (OM) degradation rate (25.5%) and humification degree (1.8) were highest in the 5%-SS treatment. Excitation-emission matrix-parallel factor confirmed that co-adding SS could promote the conversion of protein-like substances or microbial by-products into humic-like substances. Furthermore, adding 5%-SS significantly improved the relative abundances of Actinobacteria, Firmicutes and the genes related to carbohydrate and amino acid metabolism, and enhanced the interactions of bacterial community in stability and complexity. The partial least squares path model indicated that OM was the primary factor affecting humification. These results provided a promising strategy to optimize composting of municipal sludge via SS.


Asunto(s)
Compostaje , Suelo/química , Aguas del Alcantarillado/química , Acero/química , Fosfatos , Sustancias Húmicas/análisis , Bacterias , Estiércol
16.
World J Microbiol Biotechnol ; 40(1): 36, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057648

RESUMEN

Microorganisms can play a significant role in material corrosion, with bacterial biofilms as major participants in microbially influenced corrosion (MIC). The exact mechanisms by which this takes place are poorly understood, resulting in a scarcity of information regarding MIC detection and prevention. In this work, a consortium of moderately thermophilic bacteria isolated from a biofilm growing over aluminum alloy 7075 was characterized. Its effect over the alloy was evaluated on a 40-day period using Electron Microscopy, demonstrating acceleration of corrosion in comparison to the abiotic control. The bacterial consortium was biochemically and microbiologically characterized as an attempt to elucidate factors contributing to corrosion. Molecular analysis revealed that the consortium consisted mainly of members of the Bacillus genus, with lower abundance of other genera such as Thermoanaerobacterium, Anoxybacillus and Paenibacillus. The EPS polysaccharide presented mainly mannose, galactose, rhamnose and ribose. Our observations suggest that the acidification of the culture media resulting from bacterial metabolism acted as the main contributor to corrosion, hinting at an unspecific mechanism. The consortium was not sulfate-reducing, but it was found to produce hydrogen, which could also be a compounding factor for corrosion.


Asunto(s)
Aleaciones , Aluminio , Humanos , Aleaciones/química , Aluminio/química , Aluminio/metabolismo , Aluminio/farmacología , Corrosión , Bacterias/metabolismo , Biopelículas , Acero/química
17.
Biofouling ; 39(9-10): 897-915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073525

RESUMEN

Sulphate-reducing bacteria (SRB) are known to cause severe corrosion of steel structures in various industries, resulting in significant economic and environmental consequences. This review paper critically examines the impact of SRB-induced corrosion on steel, including the formation of SRB biofilms, the effect on different types of steel, and the various models developed to investigate this phenomenon. The role of environmental factors in SRB-induced corrosion, molecular techniques for studying SRBs, and strategies for mitigating corrosion are discussed. Additionally, the sustainability implications of SRB-induced corrosion and the potential use of alternative materials were explored. By examining the current state of knowledge on this topic, this review aims to provide a comprehensive understanding of the impact of SRB-induced corrosion on steel and identify opportunities for further research and development.


Asunto(s)
Biopelículas , Desulfovibrio , Acero/química , Corrosión , Sulfatos/farmacología
18.
J Environ Manage ; 347: 119102, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793291

RESUMEN

Due to high material density, high energy consumption density and CO2 emission density, it is not only difficult but significant to clarify the relationship between energy consumption, the CO2 emission and the production cost in different conditions. However, the previous researches rarely refer how to balance the energy consumption, the CO2 emission and the production cost after the fluctuation of material, energy and carbon price as well as what will happen to them if production structure changes. Therefore, based on the conservation law of mass and energy, to study iron and steel manufacturing process (ISMP), this paper, taking carbon price into consideration, establishes a muti-optimization model of energy consumption, CO2 emission and cost. After optimization with different objectives, the production cost per tonne of crude steel is reduced by 192.03 CNY (7.71%), the CO2 emission per tonne of crude steel is reduced by 224.22 kg (13.37%), and the energy consumption per tonne of steel is reduced by 51.20 kgce (9.10%). Moreover, based on the optimization results under different objectives, it is ironmaking process (coal ratio and ore ratio) and steelmaking process (amount of scrap steel) that has more impact on three above as well as ore blending and coal blending have a great influence on production cost but little effect on energy consumption and CO2 emission.


Asunto(s)
Dióxido de Carbono , Hierro , Acero/química , Carbón Mineral , Carbono
19.
Int J Biol Macromol ; 253(Pt 1): 126587, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652320

RESUMEN

Green and efficient metal corrosion inhibitors are very essential, and natural okra pectin (OP) can fulfill this need with rational use of resources. OP was prepared by water-alcohol extraction method after freeze-thaw pretreatment (FTP)/sweeping frequency ultrasound pretreatment (SFUP), and used for corrosion inhibition of ANSI 304 stainless steel (304 SS) in 1 M hydrochloric acid (HCl). The molecular weight, hydrodynamic diameter and monosaccharide composition of OP were analyzed to determine the factors on the corrosion inhibition of 304 SS. During SFUP of okra, the time-domain variation of ultrasound field was monitored by piezoelectric film sensor, its frequency-domain variation was monitored by a hydrophone, and analyzed respectively by oscilloscope and spectrum analyzer. Static weight-loss method, electrochemical and microscopic analyses were used to evaluate the corrosion inhibition efficiency of OP at temperatures (25, 30, 40, 50 °C) and concentrations (0, 0.2, 0.5, 1, 2 g·L-1) to optimize corrosion inhibition performance. It was found that OP by FTP and SFUP had higher corrosion inhibition efficiency on metals in acidic environment. According to static weight-loss method, the corrosion inhibition efficiency of OP with concentration of 2 g·L-1 (25 °C) was improved to 90.27 % in the FTP group and 93.53 % in the SFUP group, which 5.14 % and 8.93 % higher than Control (without pretreatment). Meanwhile, the corrosion inhibition efficiency decreased gradually as the temperature increased. OP corrosion inhibition performance fit Langmuir adsorption isothermal model as a mixed adsorption based on physical adsorption. It was a mixed inhibitor to protect 304 SS from corrosion.


Asunto(s)
Abelmoschus , Acero Inoxidable , Acero/química , Corrosión , Pectinas , Ácidos
20.
Int J Biol Macromol ; 253(Pt 2): 126449, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37633561

RESUMEN

Polysaccharide chitosan and L-histidine were applied to synthesize chitosan-based carbon dots (CA-CDs) by a simple laser ablation method. After characterization of the CA-CDs by FT-IR, UV-vis, Raman, XRD, TEM, and XPS, the CA-CDs were introduced as an eco-friendly and high-performance corrosion inhibitor for mild steel (MS) in 1.0 M HCl solution. The inhibition action and mechanism of CA-CDs were determined by weight loss and electrochemical measurements, in combination with SEM, AFM, and XPS. The results show that CA-CDs as mixed-type inhibitors could effectively weaken the corrosion of MS in 1.0 M HCl solution, and their maximum inhibition efficiency reaches 97.4 % at 40 mg L-1. The adsorption behavior of CA-CDs well obeys the Langmuir adsorption isotherm containing both chemisorption and physisorption. The chemisorption mainly results from the multiple adsorption sites in the CA-CDs, and the physical adsorption is due to the blocking and barrier effect of CA-CD nanoparticles. Both adsorption behaviors were proposed to elucidate the corrosion inhibition mechanism of CA-CDs.


Asunto(s)
Quitosano , Quitosano/química , Acero/química , Corrosión , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...